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Nonequilibrium coupled Brownian phase oscillators
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A model of globally coupled phase oscillators under equilibrium~driven by Gaussian white noise! and
nonequilibrium ~driven by symmetric dichotomic fluctuations! is studied. For the equilibrium system, the
mean-field state equation takes a simple form and the stability of its solution is examined in the full space of
order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical
form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte Carlo
simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the
nonequilibrium system is presented. For the long time limit, we have found five regimes. Three of them can be
obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field
method and has been detected in the Monte Carlo numerical experiments.
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I. INTRODUCTION

A system of coupled oscillators has been treated a
model system of collective dynamics that exhibits plenty
interesting properties such as equilibrium and nonequi
rium phase transitions, coherence, synchronization, segr
tion, and clustering phenomena. It has been used to s
active rotator systems@1#, electric circuits, Josephson junc
tion arrays@2#, charge-density waves@3#, oscillating chemi-
cal reactions@4#, planarXY spin models@5#, and networks of
complex biological systems such as nerve and heart cells@6#.

Such a system ofN-coupled phase oscillators is dete
mined by a set of equations of motion in the form@7#

ẋi5v i1 f ~xi !1(
j 51

N

Ki j G~xj ,xi !1h i~ t !, i 51, . . . ,N,

~1!

wherexi denotes the phase of thei th oscillator andv i is its
local frequency, i.e., its frequency in the absence of the
teraction between the oscillators. The local force is rep
sented by the functionf (x) and G(x,y) includes the cou-
pling effect between oscillators. The constantsKi j are the
coupling strengths andh i(t) characterizes fluctuations in th
system. In the case of weak coupling,G(x,y)5G(x2y) and
G is a periodic function of its argument. The specific mod
G(x)5sinx has been intensively studied and in the physi
literature it is known as a Kuramoto model@4#. If Ki j are
positive then the coupling is excitatory~meaningxi tends to
pull xj toward its value!. If Ki j are negative then the cou
pling is inhibitory~it tends to increase the difference betwe
xi andxj ). Most of studies of the model focus on the glob
coupling ~each oscillator interacts with all the other oscill
tors!, where all pairs are interacting with uniform streng
Ki j 5K/N. Then the mean-field treatment holds exactly wh
N→`.

In the paper, we study a special case of the model~1!
when the fluctuation term represents thermal-equilibrium
nonequilibrium fluctuations. The remainder of this paper
1063-651X/2002/65~5!/051115~8!/$20.00 65 0511
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organized as follows. In the following section, we analyze
equilibrium system. It is a model with thermal fluctuation
being Gaussian white noise. In Sec. III, we study a noneq
librium system by adding the second fluctuation source,
a zero-mean, exponentially correlated symmetric two-s
Markov process. It can describe a case when local frequ
ciesv i of the oscillators fluctuate in time. In Sec. III B, w
present the mean-field numerical solutions of a correspo
ing master equation and discuss results of the Monte C
simulations of Langevin equations. Finally, in Sec. IV w
formulate the main conclusions.

II. MEAN-FIELD EQUILIBRIUM SYSTEM

In this section, we analyze a system of phase oscillator
contact with a thermostat of temperatureT, namely,

ẋi52sinxi1
K

N (
j 51

N

sin~xj2xi !1G i~ t !, i 51, . . . ,N,

~2!

where thermal-equilibrium fluctuationsG i(t) are modeled by
zero-mean,d-correlated Gaussian white noise,

^G i~ t !&50, ^G i~ t !G j~s!&52Td i j d~ t2s!. ~3!

This model can represent a planar model with anisotropy
external field. More general models than Eq.~2! have been
analyzed. Nevertheless, we reconsider the simplified mo
~2! for two reasons. First, the state equation of the system
a simple tractable form. Second, another aspect of the st
ity problem of states is presented.

Let us rewrite the interaction term in the form@8#

1

N (
j 51

N

sin~xj2xi !5s cosxi2c sinxi , ~4!

where the averages
©2002 The American Physical Society15-1
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s5
1

N (
j 51

N

sinxj , c5
1

N (
j 51

N

cosxj ~5!

are order parameters for the system~1!. In the thermody-
namical limit N→` for each oscillatorxi5x the mean-field
Langevin equation is obtained from the system~1! and reads

ẋ5F~x,s,c!1G~ t !, ~6!

where the effective forceF(x,s,c)52V8(x,s,c) ~the prime
denotes a differentiation with respect tox) and the effective
potential

V~x,s,c!52~11Kc!cosx2Ks sinx. ~7!

Let us introduce a probability density

P̂~x,t !5^d„x~ t !2x…& ~8!

of the process~6!, wherex(t) is a solution of Eq.~6! for a
fixed realization of noiseG(t) and^•••& denotes an averag
over all realizations ofG(t). This density is normalized on
real axis,

E
2`

`

P̂~x,t !dx51 ~9!

and obeys the Fokker-Planck equation

] P̂~x,t !

]t
5

]

]x
V8~x,s,c!P̂~x,t !1T

]2

]x2
P̂~x,t !. ~10!

The reduced probability densityP(x,t) defined by the rela-
tion

P~x,t !5 (
n52`

`

P̂~x12pn,t ! ~11!

satisfies the Fokker-Planck equation~10! as well, is periodic

P~x12pn,t !5P~x,t ! for any integern, ~12!

and normalized on one period,

E
x0

x012p

P~x,t !dx51 for any real x0 . ~13!

The order parameterssandc are determined self-consistent
from the set of two equations@9#,

s5^sinx&5E
2`

`

sinxP̂~x,t !dx

5E
0

2p

sinxP~x,t !dx[g~s,c!, ~14!
05111
c5^cosx&5E
2`

`

cosxP̂~x,t !dx

5E
0

2p

cosxP~x,t !dx[h~s,c!, ~15!

where P̂(x,t)[ P̂(x,s,c,t) and P(x,t)[P(x,s,c,t) depend
on parameterss andc via the effective one-particle potentia
V(x,s,c) given by Eq.~7!.

Our concern is the behavior of the system in the limit
long time, t→`. The stationary state is a thermodynam
equilibrium state and the stationary solutionPst(x) of Eq.
~10! is a Gibbs distribution,

Pst~x!5N exp@2V~x,s,c!/T#, ~16!

N215E
0

2p

exp@2V~x,s,c!/T#dx. ~17!

It is well known that in the equilibrium state the avera
angular velocity vanishes~the principle of detailed balanc
holds! ^ẋ&50 ~see, e.g., Ref.@12#!. Then from Eq.~6! it
follows that

s5^sinx&50 ~18!

in the stationary state and only a symmetric state is reali
for which the effective potential reduces to the simple for

V~x,s,c!5V~x,0,c!52~11Kc!cosx. ~19!

The form of this potential is the same as for a system
noninteracting oscillators,V(x)52cosx. However, the am-
plitude A511Kc can change. Ifc.0 then the coherence
effect occurs and the most probable state is the determin
statex50. On the other hand, if 11Kc,0 then the most
probable state changes and the new state isx5p.

The order parameterc is determined by the equation

cI0S 11Kc

T D5I 1S 11Kc

T D , ~20!

where I 0(z) and I 1(z) are the modified Bessel functions
This equation can possess one, two or three solutions~see
Fig. 1!. If the coupling strengthK,1 then only one solution
exists for any temperatureT of the system@Fig. 1~a!#. For
high temperatureT..1, the upper branchc1 tends to zero
as c;T21 @Fig. 1~b!#. The opposite asymptotics, whenT
→0, can be obtained as well. In this case the upper bra
c1→1 for any K.0. The lower branchc2→21 and the
middle branchc3→21/K for K.1 @Fig. 1~a!#. Now, let us
study the stability of the stationary solutions. The linear s
bility analysis should be performed on the full set of equ
tions of motion for average valuess andc ~14!, ~15!. Multi-
plication of Eq.~10! by either sinx or cosx and integration
over x gives

ṡ52~11Kc!^sc&2Ts1Ks^c2&, ~21!
5-2



w

o
ch
ay

-

s
ed
ical
ely

the

t

set
-

ou
s

n

n
t

t

of

ints

of
lu-
he

NONEQUILIBRIUM COUPLED BROWNIAN PHASE OSCILLATORS PHYSICAL REVIEW E65 051115
ċ5~11Kc!^s2&1Tc2Ks^sc&, ~22!

and^•••& stands for the averages of products of cosx and/or
sinx ~e.g.,^sc&5^sinxcosx&). To make the system~21!, ~22!
closed, we should write equations of motion for the unkno
statistical momentŝsc&, ^s2&, and ^c2&. New, higher-order
moments will occur and in this way we obtain a hierarchy
infinite number of differential equations for moments, whi
is difficult to handle. Therefore, we proceed in another w
Let us notice that for̂ s2&[^sin2x& one may write^s2&51
2^cos2x&512^c2&. Additionally, one can introduce devia
tions from the mean values and write^c2&5c21^(dc)2& as
well as ^sc&5sc1^dsdc&. As a result, one obtains

ṡ52~c2K^~dc!2&2T!s2~11Kc!^dsdc&, ~23!

ċ5~11Kc!~12c22^~dc!2&!2Tc2Ks2c2Ks^dsdc&.
~24!

From Eq.~18! we know thats50 is a stationary solution
of the above equations. In order to obtain this solutions
50 from Eq.~23!, the correlator̂dsdc& should vanish in the

FIG. 1. The order parameterc5^cosx& for the system of
coupled phase oscillators in equilibrium as a function of the c
pling strengthK and temperatureT. All data have been obtained a
solutions of the implicit equation~20!. The upper plot shows the
dependence ofc on the couplingK for selected temperatures. Eve
at T50 the Eq.~20! has three solutionsc5(c1 ,c2 ,c3)5(1,21,
21/K) for K.1 ~for K,1 there exists only one solutionc151).
The lower plot shows the order parameterc as a function of tem-
perature. As it could be expected, for large thermal fluctuatio
stochastic forces overwhelm the potential and the coupling, and
solution tends toc150 asT→`. The stability analysis shows tha
solutions are stable only withc.0.
05111
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stationary limit, i.e.,̂ dsdc&→0 ast→`. Insertion ofs50
into the second equation~24! with ċ50 yields stationary
solutions forc. They are determined by the equation

~11Kc!~12c22^~dc!2&!2Tc50. ~25!

These solutions depend on the unknown variance^(dc)2&. In
the low temperature limitT→0, the variancê (dc)2&→0
and we recover the solutionsc151,c2521, and c3
521/K. In this case, the linear stability analysis of Eqs.~23!
and ~24! shows that the stationary point (0,c1) is a stable
node, the point (0,c2) is a saddle, and the solution (0,c3) is
an unstable node. ForT.0, the stability of solutions remain
unchanged. Indeed, in our simulations we have confirm
this statement. We have also analyzed an auxiliary dynam
system defined by a set of two differential equations, nam
@cf. Eqs.~14! and ~15!#,

ṡ52s1g~s,c!, ~26!

ċ52c1h~s,c!. ~27!

The stationary solution of this system is the same as
equilibrium state of the system~6!. In Fig. 2, we present a
vector field generated by the dynamical system~26!, ~27!
and its three stationary points (si ,ci),i 51,2,3. One can infer
that the upper point (0,c1) is a stable node, the lower poin
(0,c2) is a saddle, and the middle point (0,c3) is an unstable
node @the same as for Eqs.~23! and ~24!#. We have also
found unexpectedly that the trajectory of the system~26!,
~27! is the same as that obtained from simulations of the
of Langevin equations~2!, see Fig. 2. It allows us to formu

-

s,
he

FIG. 2. The plot shows a vector field of the right hand side
the dynamical system~26!, ~27! for K53.1 andT50.5. Three black
dots are solutions of the mean-field problem, i.e., stationary po
of Eqs.~26!, ~27!. The upper solutionc1 is a stable node, the middle
onec3 is an unstable node, and the lowest onec2 is a saddle point.
Let us notice that stability analysis in one dimension~assuming that
s50) would lead to a false conclusion that the lowest pointc2 is
stable. Solid lines are a result of the Monte Carlo simulation
8000 particles with the initial condition set to the mean-field so
tions c2 and c3. In the (s,c) space the system evolves along t
clockwise or anticlockwise ‘‘semicircles’’~depending on the initial
microstate! to the stable node (0,c1).
5-3
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late the conjecture that the hierarchy of infinite number
equations for moments of the set (sinx,cosx) is equivalent to
Eqs.~26! and ~27!. Unfortunately, we cannot prove it rigor
ously.

III. MEAN-FIELD NONEQUILIBRIUM SYSTEM

Nonequilibrium systems can be modeled by including
term that describes nonthermal and nonequilibrium fluct
tions, noise, and perturbations. There are many possibil
to do this but here we consider a slight modification of t
previous model, namely,

ẋi52sinxi1
K

N (
j 51

N

sin~xj2xi !1G i~ t !1j i~ t !,

i 51, . . . ,N, ~28!

The random functionsj i(t) represent nonequilibrium fluc
tuations and are modeled by asymmetricdichotomic Mar-
kovian stochastic processes@10#,

j i~ t !5$2a,a%, a.0, ~29!

P~2a→a!5P~a→2a!5m,

whereP(2a→a) is a probability per unit time of the jump
from the state2a to the statea. This process is of zero
average,̂ j i(t)&50, and exponentially correlated,

^j i~ t !j j~s!&5a2d i j e
2ut2su/t, ~30!

wheret51/2m is correlation time of the processj i(t). So, it
is characterized by two parameters: its amplitudea ~or
equivalently the variancêj2(t)&5a2) and the correlation
time t.

The mean-field Langevin equation takes the form

ẋ52V8~x,s,c!1G~ t !1j~ t ! ~31!

and the corresponding master equations read@11#

]P1~x,t !

]t
5

]

]x
@V8~x,s,c!2a#P1~x,t !1T

]2

]x2
P1~x,t !

2mP1~x,t !1mP2~x,t !, ~32!

]P2~x,t !

]t
5

]

]x
@V8~x,s,c!1a#P2~x,t !1T

]2

]x2
P2~x,t !

1mP1~x,t !2mP2~x,t !, ~33!

where the probability densities

P1~x,t ![P~x,a,t !, P2~x,t ![P~x,2a,t !, ~34!

depend on the order parameterss and c, which in turn de-
pend self-consistently on the marginal densityP(x,t)
5P1(x,t)1P2(x,t) via the relations~14! and ~15!. Equa-
tions ~32! and~33! cannot be solved analytically, even in th
stationary state. However, in some limiting cases, station
05111
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solutions of them are known, e.g., if the correlation timet
→` ~the adiabatic limit! or if temperature of the system i
zero,T50.

A. Analytical results

From the ratchet theory we know that the stationary av
age angular velocity is zero,^v&5^ẋ&50, because the po
tential ~7! is symmetric and fluctuations~29! are symmetric
@12#. Therefore,

s5^sinx&50 ~35!

and V(x,s,c) takes the same form as in the previous ca
~19!. In the adiabatic limit, the equation determining a s
tionary state is

c5
1

2E0

2p

cosx@p1~x,c!1p2~x,c!#dx, ~36!

where the stationary probability densitiespi(x,t),
( i 51,2) read

pi~x,c!5

Ui~x,c!E
x

x12p

Ui
21~y,c!dy

E
0

2p

Ui~x,c!E
x

x12p

Ui
21~y,c!dydx

~37!

and

U6~x,c!5e2V(x,0,c)/Te6ax/T. ~38!

In the second limit, i.e., when temperature of the system
zero,T50, the stationary state is determined by the equat

c5

E
V(c)

cosxD21~x,c!e2C(x,c)dx

E
V(c)

D21~x,c!e2C(x,c)dx

, ~39!

where the thermodynamic potential

C~x,c!5E
0

x

D21~y,c!V8~y,0,c!dy, ~40!

and the effective diffusion function

D~x,c!5t@a22V8~x,0,c!2#. ~41!

The integration intervalV(c)5@0,2p# iff D(x,c).0. If in
some intervals the functionD(x,c) is negative thenV(c)
5@x1 ,x2#, wherex1 andx2 are suitable roots of the equatio
D(x,c)50 and in the interval@x1 ,x2# the diffusion function
is positive.

The limiting caseT50 andt→` is analytically tractable.
From the master equations it follows that in this case
stationary state is determined by the equation

@a22V8~x,0,c!2#P~x!5const. ~42!
5-4
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In thediffusive regime, when dichotomic noise activates bo
forward and backward transitions over barriers of the eff
tive potential, the solution of Eq.~42! is

P~x!5const/@a22V8~x,0,c!2# ~43!

and the only solution of the state equation~15! is c50. In
the nondiffusive regime, when dichotomic noise cannot act
vate neither forward nor backward transitions over barri
of the effective potential, the normalized solution of Eq.~42!
has the form

P~x!5 1
2 @d~x2x1!1d~x2x2!#, ~44!

wherex1 andx2 are solutions of the equation

a22V8~x,0,c!250. ~45!

If 1 1Kc.0 then the state equation is determined by

c5cos$arcsin@a/~11Kc!#%. ~46!

This equation can possess two positive roots,c1.c2.0. The
solutionc1 is stable whilec2 is unstable. If 11Kc,0 then

c52cos$arcsin@a/~11Kc!#%. ~47!

This equation can possess two negative roots that are
stable. It is depicted in Fig. 3.

B. Numerical methods

In a general case the mean-field problem reduces to
set of nonlinear master equations~32! and ~33! that have to
be solved. Apart from a few previously considered spec
cases that can be treated analytically, only numerical m
ods are applicable. We have approached the numerical p

FIG. 3. Solutions of the stationary mean-field problem~14!,~15!,
~32!, and ~33!. The temperature is zero and the amplitude of
chotomic fluctuations isa52.8. As in the equilibrium case, nega
tive solutions are unstable. Stable and observed in Monte C
simulations solutions lie in the upper planec.0. Gray regions
depict places where the locking condition is met, i.e., maximum
the effective force overwhelms the amplitude of fluctuations. O
can notice that for small values oft, the system starts to behave
an equilibrium one. In the caset→` the asymptotic analytica
solution is shown. For finitet numerical results are depicted. In th
case the system exhibits onset of hysteresis inc(K).
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lem of solving Eq.~32! and ~33! as follows. Conditions of
self-consistency have been considered~14! and ~15! as the
nonlinear minimization problem in two dimensions on t
bounded domain21<s<1 and 21<c<1. It has been
handled in a standard way, making use of numerical librar
However, each evaluation of functionsg and h for given
(s,c) requires the knowledge of stationary solution of t
system~32!, ~33! with fixed s andc. This is, in turn, a linear
boundary value problem that can be easily solved with
help of finite element method~FEM!. In the caseT50, the
stationary distributionP(x) is given be quadratures but it i
very difficult to handle it analytically. Moreover, we found
practically easier to obtain a FEM solution for small enou
T than to estimate, divergent in some cases, triple integr

Additionally, in order to verify mean-field results we hav
performed Monte Carlo simulations of the Langevin equ
tions ~28!. This independent method enabled not only ver
cation of numerical results but also applicability of the mea
field approach. Because the Monte Carlo simulation follo
the evolution of microscopic state of the system it can
considered as a numerical experiment, contrary to the me
field approach that is only an approximation. In gener
Monte Carlo simulations of globally interactingN particles
require.N2 operations per time step. The special form
the interaction term.sin(xj2xi), leads to relations~4! and
~5!. In the course of simulation the average valuess and c
need to be evaluated only once per a simulation step, w
reduces the number of operations per a time step to.N.

C. General case: numerical analysis

All numerical mean-field results have been obtained in
stationary regime. First, we study the zero-temperature c
T50. The natural characteristics of the stationary state
statistical moments, in particular the first two moments^x&
and^x2&. These moments are not good characteristics in
case considered. If the system is spatially periodic, then
any spatially periodic functionA(x)5A(x12p) we can cal-
culate its mean value exploiting either the probability dens
P̂(x,t) or the reduced probability distributionP(x,t) be-
cause then the equality

^A~x!&5E
2`

`

A~x!P̂~x,t !dx5E
0

2p

A~x!P~x,t !dx ~48!

holds. It is not a case for nonperiodic functions and th
there is a problem that distribution should be used for cal
lation of the average value. Therefore, we consider perio
functions. Here, two natural order parameterss5^sinx& and
c5^cosx& occur that characterize the probability distributio
in the same way aŝx& and^x2&. Indeed, the function sinx is
odd like the functionx and the function cosx is even like the
functionx2. Becausêsinx&50, below we analyzêcosx&. In
Fig. 3, we show the dependence of the order parametc
5^cosx& on the coupling strengthK. One can distinguish
two main regimes: the diffusive@dichotomic noise activates
transitions over barriers of the effective potential~19!# and
nondiffusive or locked@dichotomic noise cannot activat
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transitions over barriers of the effective potential~19!#.
These two regimes, marked by white and gray regions in
3, are separated by two critical lines:Kc115a for positive
values ofc and Kc1152a for negative values ofc. For
negativec, the dependence ofc upon K is qualitatively the
same as for the equilibrium system~Fig. 1!. These solutions
are unstable and therefore will not be considered. Now, le
discuss the positive solutionsc.0. They depend strongly on
the correlation timet of dichotomic fluctuations. For shor
correlation time, the order parameterc monotonically in-
creases with the growing couplingK. For longer correlation
time, new effects arise: the dependence is discontinuous
hysteretic. In some domain there are three solutionsc1.c2
.c3. The solutionsc1 andc3 are stable whilec2 is unstable.
The hysteresis is bigger and bigger whent increases. The
jumping pointK1 from the lower to the upper branch tend
to infinity and the jumping pointK2 from the upper to the
lower branch tends to a constant value determined by
~46!. The upper branch of solutionsc1(K)→1 and the lower
branchc3(K)→0 whent→`. For t5`, the solutions split
into two branches of three solutions, namely, onec350 and
two other determined by Eq.~46!. The stationary mean-field
solutions have been verified by the Monte Carlo simulatio
The comparison is presented in Fig. 4. Simulations show
the implicit assumption of time-independent stationarity
the system~when t→`) is restricted to some values of pa
rameters of the model. Indeed, if the time-independent
tionary state of the system exists then the mean-field s
tions agree with simulations. In particular, fort50.5 the
hysteresis is observed~see pointK52.94 in Figs. 4 and 7!.
However, for longer correlation timet, temporarily oscillat-
ing steady states exist for which the probability distributi
P(x,t) is periodic in time. In consequence the order para
eterss5s(t) andc5c(t) are time periodic and in the limi
of long time, the time-dependent steady states appear. Th
the case when the mean-field predictions fail, e.g., the h

FIG. 4. The same case as in Fig. 3: the comparison of me
field results and Monte Carlo simulations. Fort50.25 andt50.5
there is a perfect agreement of the Monte Carlo and mean-
methods. However, fort51 andt52 temporal oscillations of den
sity of particles appear in the Monte Carlo method. Thus, the o
parameter also performs temporal oscillations. An averaged v
of those oscillations differs from those coming from the mean-fi
solution. The standard deviation ofc ~averaged in time! is shown in
the lower inset. One can notice that if oscillations disappeardc
50) then the simulated values ofc agree very well with mean-field
predictions.
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teresis is not realizable. In Fig. 4, we depicted this pheno
enon for t51,2. We have noticed only monotonic depe
dence ofc uponK ~if c is a periodic function of time, its time
average is taken!. The quantity that can characterize th
time-independent/time-dependent stationarity~i.e., oscilla-
tions! of the long time state is the time-averaged stand
deviation (dc)25^c2& t2^c& t

2 of the order parameter. We
have observed that ifdc50 then the mean-field solutions ar
correct. Otherwise, they are incorrect. It is shown in t
lower inset of Fig. 4.

In Fig. 5, we present the phase diagram on the (K,t)
plane for a fixed amplitudea52.8 of dichotomic fluctua-
tions. In the case of noninteracting oscillators, this value oa
corresponds to the diffusive regime. Roughly speaking, th
are two regions: diffusive whena.11Kc(t) @i.e., dichoto-
mic noise can induce transitions over barriers of the effec
potential~19!# and nondiffusive whena,11Kc(t) @i.e., di-
chotomic noise cannot induce transitions over barriers of
effective potential~19!#. The diffusive region is divided into
two parts that we call the unlocked regime~where the mean-
field solutions are correct! and the oscillating regime~where
the mean-field solutions fail!. In the unlocked regime, ther
is one and only one time-independent stationary state
there is only one stationary value of the order parametec
5^cosx& that is always stable. In this regime, the reduc
stationary probability densityPst(x)Þ0 for anyx. It means
that with nonzero probability the phases of the oscillators
take any value ofx and oscillators are not synchronized.
the oscillating regime, the only stationary state is tempora
oscillating state for which lim

t→`
P(x,t) is time periodic and

the order parameterc5c(t) is time periodic. From previ-
ously discussed results, it follows that this regime is bound
from the right, i.e., ifK.K0 then this regime disappears
The critical valueK0 can be determined by Eq.~46! from the
condition that it possesses the double rootc15c2. The oscil-
lating regime is presented in Fig. 6, where we show evo
tion of two distributions, the full densityP̂(x,t) normalized
on the interval (2`,`) and the reduced densityP(x,t) nor-

n-

ld

er
ue
d

FIG. 5. The phase diagram of the system witha52.8 andT
50. Five various regimes are distinguished: unlocked, oscillati
mean-field hysteretic, locked, and bistable. The oscillating reg
has been verified by Monte Carlo simulations. All other data co
from the stationary mean-field problem. The empirical formulat
52/K surprisingly well fits the left boundary of the oscillatin
region.
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malized on one period. In the latter case, the density os
lates between the distribution of one maximum aroundp ~it
corresponds to the maximum of the local potential2cosx)
and the distribution of two maxima around 0 and 2p ~it
corresponds to the minima of the local potential!.

In turn, the nondiffusive region is divided into two othe
parts that we call the locked and hysteretic regimes. In
locked regime, only one steady-state solution exists. In
regime, there are intervals ofx for which the reduced station
ary probability densityPst(x)50 and the phases of the o
cillators are locked in these intervals. It is an effect of int
action and corresponds to the synchronization of oscilla
~let us remember that in the case on noninteracting osc
tors, the diffusive regime is realized in which the phases
take arbitrary values!. The synchronization is stronger if th
support ofPst(x) is smaller. In this regime, there is only on
mean-field~MF! value ofc5^cosx&, which is always stable
The so-called MF hysteretic regime is defined in the follo
ing way. There are three mean-field stationary valuesc1
.c2.c3.0 of the order parameter. The solutionsc1 andc3

FIG. 6. Monte Carlo simulations of the system fora52.8,t
51.0,K52.94, andT50. None of the mean-field prediction is re
alized. In the upper plot evolution of the probability density reduc
to xP(0,2p) is shown. In lower plot the full distribution is pre
sented. A starting value was a uniform distribution onxP(0,2p).

FIG. 7. Monte Carlo simulations of the system fora52.8,t
50.5,K52.94, andT50. The starting point was 8000 particle
distributed uniformly onxP(0,2p). The only difference between
left and right scenarios is the microscopic state: individual partic
were chosen differently~all macroscopic parameters are the sam!.
The left scenario leads to diffusive state i.e.,c,(2.821)/K while
the right one leads to locked onec.(2.821)/K. The shape of a
stationary, mean-field distribution is shown fort→`.
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are stable whilec2 is unstable. However, in this regime on
one mean-field solutionc1 is realized, which lies on the up
per branch of the mean-field hysteresis, cf. the caset52 for
K.4 in Fig. 4. There is also a regime of bistability. As in th
previous case, there are three mean-field stationary va
c1.c2.c3.0 of the order parameter. But now, two stab
solutionsc1 andc3 can be realized what is demonstrated
Fig. 7. The upper statec1.c3 corresponds to the locke
regime,a,11Kc1(t) and the lower statec3 corresponds to
the unlocked regime,a.11Kc3(t), cf. Fig. 4, the caseK
52.94 andt50.5.

It is also instructive to see how the probability distrib
tions P(x,t) or P̂(x,t) evolve in time approaching the lon
time limit. In Fig. 7, the evolution of the densityP(x,t) is
shown for the values of parameters chosen from the bista
ity regime of the phase diagram, i.e., when two stable s
tionary solutions exist. One can observe that in depende
of the microscopic initial conditions the system evolve eith
to the diffusive stationary state or to the nondiffusive lock
stationary state. In two cases, the macroscopic state, i.e.
initial probability density of oscillators is the same unifor
distribution. The microscopic state, i.e., initial positions
all ‘‘particles’’ and realizations of noises are different, it d
termines evolution ofP(x,t). For illustrating animations of
the time evolution we refer to our webpage@13#.

The influence of temperature is depicted in Fig. 8~only
the mean-field case is shown!. On the basis of these result
one may conclude that the increase of thermal fluctuati
acts like the decrease of correlation timet of nonequilibrium
fluctuations. The hysteretic region inK is reduced as tem
perature grows. In particular, in Fig. 8 we see that forT
51.5 the mean-field problem has got only a single soluti

IV. SUMMARY

In this paper, we have investigated the equilibrium a
nonequilibrium system of coupled phase oscillators. In fa
it can be any abstract model of interacting particles in s
tially periodic structure with a periodic global interactio
~e.g., interacting Brownian motors@14,15#!. The equilibrium
system defined by Eq.~2! is a special case of models con

d

s

FIG. 8. The order parameterc versus coupling strengthK for
selected values of temperatureT. The increase ofT decreases the
region of hysteresis. Remaining parameters aret52.0 anda52.8.
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sidered in the literature. Nevertheless, to the best of
knowledge, the state equation~20! has not been presente
We pay attention to the subtle stability problem that som
times is treated superficially@15#. Properties of the nonequi
librium system~28! are naturally much more interesting. Th
phase diagram consists of five parts and cannot be fully
tained from the mean-field approach. The non-mean-field
gime is the oscillating regime, which has been detected
use of the Monte Carlo simulations and by analyzing flu
tuations of the order parameterc5^cosx&. The next interest-
ing finding is that although the noninteracting system is
the diffusive regime, the interaction can move the system
the nondiffusive regime and then ‘‘particles’’ are confined
valleys of the potential~of course, it is exact when tempera
ture T50). It means that effectively, for the one-partic
dynamics, the barrier height 2(11Kc) of the local potential
.E

ce

.
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is magnified and nonequilibrium fluctuations of amplitudea
are not able to induce transitions over barrier.

All the results so far refer to the simple reflectio
symmetric local potential2cosx. If we add the higher order
harmonics, e.g., cos 2x, the potential is still symmetric. How
ever, behavior of the system can then be radically differ
because the second order parameters5^sinx&Þ0. Phenom-
ena such as the symmetry breaking, phase transitions,
noise-induced transport can occur in the system. The pa
on this subject will be published elsewhere.
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