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Nonequilibrium coupled Brownian phase oscillators
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A model of globally coupled phase oscillators under equilibri(driven by Gaussian white nois@nd
nonequilibrium (driven by symmetric dichotomic fluctuationss studied. For the equilibrium system, the
mean-field state equation takes a simple form and the stability of its solution is examined in the full space of
order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical
form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte Carlo
simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the
nonequilibrium system is presented. For the long time limit, we have found five regimes. Three of them can be
obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field
method and has been detected in the Monte Carlo nhumerical experiments.
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[. INTRODUCTION organized as follows. In the following section, we analyze an
equilibrium system. It is a model with thermal fluctuations
A system of coupled oscillators has been treated as heing Gaussian white noise. In Sec. I, we study a nonequi-
model system of collective dynamics that exhibits plenty oflibrium system by adding the second fluctuation source, i.e.,
interesting properties such as equilibrium and nonequiliba zero-mean, exponentially correlated symmetric two-state
rium phase transitions, coherence, synchronization, segreghtarkov process. It can describe a case when local frequen-
tion, and clustering phenomena. It has been used to studyies w; of the oscillators fluctuate in time. In Sec. Il B, we
active rotator systemgl], electric circuits, Josephson junc- present the mean-field numerical solutions of a correspond-
tion arrays(2], charge-density wavds], oscillating chemi- ing master equation and discuss results of the Monte Carlo
cal reaction$4], planarXY spin modelg5], and networks of ~simulations of Langevin equations. Finally, in Sec. IV we
complex biological systems such as nerve and heart[@&lls formulate the main conclusions.
Such a system oN-coupled phase oscillators is deter-

mined by a set of equations of motion in the fofi Il. MEAN-FIELD EQUILIBRIUM SYSTEM
: N ] In this section, we analyze a system of phase oscillators in
Xi= “’i+f(xi)+;1 KijG(xj,xi) +7i(t), i=1,... N, contact with a thermostat of temperatdienamely,
() N
wherex; denotes the phase of tlih oscillator andw; is its X; = —sinx; + N >, sin(x—x)+Ti(t), i=1,... N,

local frequency, i.e., its frequency in the absence of the in- =

teraction between the oscillators. The local force is repre-
sented by the functiori(x) and G(x,y) includes the cou-
pling effect between oscillators. The constakts are the
coupling strengths ang,;(t) characterizes fluctuations in the
system. In the case of weak couplirg(x,y)=G(x—y) and _ _ ) ) _ Y
G is a periodic function of its argument. The specific model (Ti(0)=0, (Ti(OT(9)=2T0;jo(t=s). @
G(x)=sinx has been intensively studied and in the physica
literature it is known as a Kuramoto modgl]. If K;j; are
positive then the coupling is excitatofgneaningx; tends to
pull x; toward its valug If K;; are negative then the cou-
pling is inhibitory (it tends to increase the difference between
X; andx;). Most of studies of the model focus on the global
coupling (each oscillator interacts with all the other oscilla-
tors), where all pairs are interacting with uniform strength,
Kij=K/N. Then the mean-field treatment holds exactly when 1
N—oe. _ = 2, sin(X;—X;)=scosx;—csinx;, 4
In the paper, we study a special case of the mddgl N =1
when the fluctuation term represents thermal-equilibrium and
nonequilibrium fluctuations. The remainder of this paper iswhere the averages

@

where thermal-equilibrium fluctuatiod§(t) are modeled by
zero-meang-correlated Gaussian white noise,

LI'his model can represent a planar model with anisotropy or
external field. More general models than E2). have been
analyzed. Nevertheless, we reconsider the simplified model
(2) for two reasons. First, the state equation of the system has
a simple tractable form. Second, another aspect of the stabil-
ity problem of states is presented.

Let us rewrite the interaction term in the forr@]

N
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N
Z COSXj (5)

Z||—\

N
1
s=1 2 sinx; ,

are order parameters for the systém. In the thermody-
namical limitN—oo for each oscillatox; =x the mean-field
Langevin equation is obtained from the systéthand reads

x=F(x,s,c)+T(t), (6)
where the effective forc€(x,s,c)=—V'(x,s,c) (the prime
denotes a differentiation with respectxp and the effective
potential

V(X,s,c)=—(1+Kc)cosx—Kssinx. (7)
Let us introduce a probability density

PG =(8X(1) X)) ®
of the process6), wherex(t) is a solution of Eq(6) for a
fixed realization of noisé&'(t) and(- - -) denotes an average

over all realizations of '(t). This density is normalized on a
real axis,

F P(x,t)dx=1 (9)

and obeys the Fokker-Planck equation

Px R &
= ok (WSOPXDFT P, (10

The reduced probability densify(x,t) defined by the rela-
tion

P(x,t)= > P(x+2mn,t) (11)
n=-—ow
satisfies the Fokker-Planck equatid®) as well, is periodic
P(x+2mn,t)=P(x,t) for any integern, (12

and normalized on one period,

Xg+2m
J' P(x,t)dx=1 for any real xg. (13
Xo

The order parametessandc are determined self-consistently
from the set of two equatior9],

s=(sinx)= J'jo sinxP(x,t)dx

:fzwsinxP(x,t)dng(s,c), (14)
0
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c=<cosx>=J’ cosxP(x,t)dx
2
=J’ cosxP(x,t)dx=h(s,c), (15
0

where P(x,t)=P(x,s,c,t) and P(x,t)=P(x,s,c,t) depend
on parameters andc via the effective one-particle potential
V(x,s,c) given by Eq.(7).

Our concern is the behavior of the system in the limit of
long time, t—o. The stationary state is a thermodynamic
equilibrium state and the stationary solutiéq,(x) of Eq.
(10) is a Gibbs distribution,

P.(X)=Nexd —V(x,s,c)/T], (16)
2w
N—lzf exd — V(x,s,c)/T]dx. (17
0

It is well known that in the equilibrium state the average
angular velocity vanisheghe principle of detailed balance
holds (x)=0 (see, e.g., Ref[12]). Then from Eq.(6) it
follows that

s=(sinx)=0 (18

in the stationary state and only a symmetric state is realized
for which the effective potential reduces to the simple form

V(x,s,c)=V(x,0c)=—(1+Kc)cosx. (19

The form of this potential is the same as for a system of
noninteracting oscillatorsy(x) = —cosx. However, the am-
plitude A=1+Kc can change. It>0 then the coherence
effect occurs and the most probable state is the deterministic
statex=0. On the other hand, if +Kc<0 then the most
probable state changes and the new state=isr.

The order parametaris determined by the equation

clg , (20

1+Kc_ 1+Kc
T ) N T

where 14(z) and 1,(z) are the modified Bessel functions.
This equation can possess one, two or three solutises
Fig. 1. If the coupling strengtiK <1 then only one solution
exists for any temperatur€ of the systemFig. 1(a)]. For
high temperatur@>>1, the upper branch, tends to zero
asc~T ! [Fig. 1(b)]. The opposite asymptotics, whéh
—0, can be obtained as well. In this case the upper branch
¢c;—1 for any K>0. The lower branctc,——1 and the
middle branchc;— — 1/K for K>1 [Fig. 1(a)]. Now, let us
study the stability of the stationary solutions. The linear sta-
bility analysis should be performed on the full set of equa-
tions of motion for average valuesandc (14), (15). Multi-
plication of Eq.(10) by either sirx or cosx and integration
overx gives

s=—(1+Kc)(sc)— Ts+Ks(c?), (22)
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FIG. 2. The plot shows a vector field of the right hand side of
the dynamical syster{26), (27) for K=3.1 andT=0.5. Three black
dots are solutions of the mean-field problem, i.e., stationary points
of Egs.(26), (27). The upper solutior, is a stable node, the middle
onec; is an unstable node, and the lowest @aads a saddle point.
Let us notice that stability analysis in one dimensfagsuming that
s=0) would lead to a false conclusion that the lowest painis
stable. Solid lines are a result of the Monte Carlo simulation of
8000 particles with the initial condition set to the mean-field solu-
tions ¢, andcs. In the (s,c) space the system evolves along the
clockwise or anticlockwise “semicircles{depending on the initial

FIG. 1. The order parameter=(cosx) for the system of Microstate to the stable node (6,).
coupled phase oscillators in equilibrium as a function of the cou-
pling strengthK and temperatur@. All data have been obtained as Stationary limit, i.e.{8sdc)—0 ast—oe. Insertion ofs=0
solutions of the implicit equatiori20). The upper plot shows the into the second equatiof24) with c=0 yields stationary
dependence of on the coupling for selected temperatures. Even gp|utions forc. They are determined by the equation
at T=0 the Eqg.(20) has three solutions=(c,,C,,c3)=(1,—1,
—1/K) for K>1 (for K<1 there exists only one solutian=1). (1+ KC)(l—C2—<(5c)2>)—TC=O. (25)
The lower plot shows the order parameteas a function of tem-
perature. As it could be expected, for large thermal quctuationsThese solutions depend on the unknown varia(mée)z). In

stochastic forces overwhelm the potential and the coupling, and thﬁwe low temperature limif—0, the variance((5C)2>—>O
solution tends te@;=0 asT—~. The stability analysis shows that ! _ _
and we recover the solutiong;=1,c,=—1, and c;

solutions are stable only witb=>0. = —1/K. In this case, the linear stability analysis of E{3)
. ) and (24) shows that the stationary point €Q) is a stable
c=(1+Kc)(s%)+Tc—Ks(so), (22)  node, the point (@,) is a saddle, and the solution ¢g) is
and(- - - stands for the averages of products of xasd/or an unstable node. F(T(>O, the .stabili.ty of solutions rema_ins
unchanged. Indeed, in our simulations we have confirmed

s:nx (g.g.,(sﬁz ?dsmx.::osx)). -[.O makfe th?. sysfterﬁtﬁl), (2k2) this statement. We have also analyzed an auxiliary dynamical
closed, we shoula write eq;‘a lons ozmo lon forthe un nownsystem defined by a set of two differential equations, namely
statistical momentgsc), (s°), and(c). New, higher-order [cf. Eqs.(14) and (15)]
moments will occur and in this way we obtain a hierarchy of " ’ '

infinite number of differential equations for moments, which .

is difficult to handle. Therefore, we proceed in another way. s=-s+9(s,0), (26)

Let us notice that foXs?)=(sir’x) one may write{(s?)=1 .

—(cogx)=1—(c?. Additionally, one can introduce devia- c=—c+h(s,c). (27)
tions from the mean values and write?)=c?+((5¢c)?) as

well as{sc)=sc+(dsdc). As a result, one obtains The stationary solution of this system is the same as the

equilibrium state of the systeit®). In Fig. 2, we present a
é=—(c—K((5c)2>—T)s—(1+ Kc)(dsdc)y, (23 vector field generated by the dynamical systé?f), (27)
and its three stationary points;(c;),i=1,2,3. One can infer
c=(1+Kc)(1—c?—((5c)?))— Te—KsZc—Ks(5ssc). that the upper point (0;) is a stable node, the lower point
(24) (0,c,) is a saddle, and the middle point €g) is an unstable
node [the same as for Eq$23) and (24)]. We have also
From Eq.(18) we know thats=0 is a stationary solution found unexpectedly that the trajectory of the systé8),
of the above equations. In order to obtain this solution (27) is the same as that obtained from simulations of the set
=0 from Eq.(23), the correlatof §ssc) should vanish in the  of Langevin equation§2), see Fig. 2. It allows us to formu-
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late the conjecture that the hierarchy of infinite number ofsolutions of them are known, e.g., if the correlation time

equations for moments of the set (gjoosx) is equivalent to

—oo (the adiabatic limit or if temperature of the system is

Egs.(26) and (27). Unfortunately, we cannot prove it rigor- zero,T=0.

ously.

I1l. MEAN-FIELD NONEQUILIBRIUM SYSTEM

A. Analytical results

From the ratchet theory we know that the stationary aver-

Nonequilibrium systems can be modeled by including aage angular velocity is zerdy)=(x)=0, because the po-
term that describes nonthermal and nonequilibrium fluctuatential (7) is symmetric and fluctuation®9) are symmetric
tions, noise, and perturbations. There are many possibilities] 2]. Therefore,
to do this but here we consider a slight modification of the

previous model, namely,

N

) ] K .
Xi == SinX; + 21 sin(x;—x;) + (1) + &(t),
=

i=1,... N, (29
The random functiong;(t) represent nonequilibrium fluc-
tuations and are modeled bysymmetricdichotomic Mar-

kovian stochastic processgRD],

&(t)y={—-a,a}, a>0, (29

P(-a—a)=P(a—-a)=pu,

whereP(—a—a) is a probability per unit time of the jump
from the state—a to the statea. This process is of zero
average{&;(t))=0, and exponentially correlated,

(&i(DEj(9))= az5ijef|tfs|/7,

wherer=1/2u is correlation time of the procegg(t). So, it
is characterized by two parameters: its amplitualgor
equivalently the variancé&?(t))=a?) and the correlation
time 7.

The mean-field Langevin equation takes the form

(30

x=—V'(x,s,c)+(t)+&(t) (3D

and the corresponding master equations fdadl

Pt 9 52
T_a_x[v (x,s,c)—a]P+(x,t)+TﬁP+(x,t)
_MP+(X,t)+MP_(X,t), (32)
P_(xt) 9 32
T—&[V (x,s,c)+a]P,(x,t)+T§P,(x,t)
+,U,P+(X,t)—,bLP,(X,t), (33)
where the probability densities
P.(x,t)=P(x,a,t), P_(x,t)=P(x,—a,t), (34

depend on the order parameterand ¢, which in turn de-
pend self-consistently on the marginal densiB(x,t)
=P, (x,t)+P_(x,t) via the relationg14) and (15). Equa-

tions (32) and(33) cannot be solved analytically, even in the
stationary state. However, in some limiting cases, stationary

s=(sinx)=0 (35

and V(x,s,c) takes the same form as in the previous case
(19). In the adiabatic limit, the equation determining a sta-
tionary state is

1

2
c= —f cosx[ p4(x,c)+p_(x,c)]dx,

2/, (36)

where the stationary probability densitiep;(x,t),
(i=+,-) read

X+ 2
ui(x,c)fx U; Y(y,c)dy

JZﬂ'
0

U N (X,C) — 67V(x,0,c)/Tet axIT_

pi(X!C): (37)

X+ 2

Ui(x,c)f U; Y(y,c)dydx
X

and

(38)

In the second limit, i.e., when temperature of the system is

zero, T=0, the stationary state is determined by the equation

f cosxD~1(x,c)e” YO dx
Q(c)
c= , (39
f D 1(x,c)e” Y*Odx
Q(c)

where the thermodynamic potential

X
‘I'(x,c)=J D~ (y,c)V'(y,0c)dy, (40)
0
and the effective diffusion function
D(x,c)=1a?—V'(x,0¢)?]. (41)

The integration interva{)(c) =[0,27] iff D(x,c)>0. If in
some intervals the functiod(x,c) is negative ther)(c)
=[X1,X5], wherex, andx, are suitable roots of the equation
D(x,c)=0 and in the intervalx,,X,] the diffusion function
is positive.

The limiting caselr =0 andr— o« is analytically tractable.
From the master equations it follows that in this case the
stationary state is determined by the equation

[a®—V'(x,0,c)2]P(x)=const. (42)
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1

lem of solving Eq.(32) and (33) as follows. Conditions of
self-consistency have been considef&d) and (15) as the
nonlinear minimization problem in two dimensions on the
bounded domain—1<s<1 and —1=<c=<1. It has been
handled in a standard way, making use of numerical libraries.
However, each evaluation of functiomgsand h for given
(s,c) requires the knowledge of stationary solution of the
system(32), (33) with fixed sandc. This is, in turn, a linear
boundary value problem that can be easily solved with the
help of finite element methotFEM). In the caser =0, the
stationary distributiorP(x) is given be quadratures but it is
very difficult to handle it analytically. Moreover, we found it
FIG. 3. Solutions of the stationary mean-field problei),(15), practically eqsier to o_btain a F_EM solution for s_malll enough
(32), and (33). The temperature is zero and the amplitude of di- T than to estimate, divergent in some cases, triple integrals.
chotomic fluctuations im=2.8. As in the equilibrium case, nega-  Additionally, in order to verify mean-field results we have

tive solutions are unstable. Stable and observed in Monte Carl@erformed Monte Carlo simulations of the Langevin equa-
simulations solutions lie in the upper plame-0. Gray regions tions(28). This independent method enabled not only verifi-
depict places where the locking condition is met, i.e., maximum ofcation of numerical results but also applicability of the mean-
the effective force overwhelms the amplitude of fluctuations. Onefield approach. Because the Monte Carlo simulation follows
can notice that for small values ef the system starts to behave as the evolution of microscopic state of the system it can be
an equilibrium one. In the case— the asymptotic analytical considered as a numerical experiment, contrary to the mean-
solution is shown. For finite numerical results are depicted. In this field approach that is only an approximation. In general,
case the system exhibits onset of hysteresig(K). Monte Carlo simulations of globally interactirg particles

o _ . o _ require =N? operations per time step. The special form of
In thediffusive regimewhen dichotomic noise activates both the interaction term=sin(x—Xx), leads to relationg4) and

forward and backward transitions over barriers of the effecys). |n the course of simulation the average valsesnd c
tive potential, the solution of Ed42) is need to be evaluated only once per a simulation step, what
P(x) = const{ a>— V' (x,0¢)?] 43) reduces the number of operations per a time step b

0.5

co

and the only solution of the state equatid®) is c=0. In C. General case: numerical analysis

the nondiffusive regimewhen dichotomic noise cannot acti-  All numerical mean-field results have been obtained in the

vate neither forward nor backward transitions over bal’rier%tationary regime_ First, we study the zero-temperature case,
of the effective potential, the normalized solution of B2)  T=0. The natural characteristics of the stationary state are

has the form statistical moments, in particular the first two momefis
and(x?). These moments are not good characteristics in the
P(X)=3[8(x—Xq)+ 8(Xx—Xz)], (44 case considered. If the system is spatially periodic, then for
, . any spatially periodic functioA(x) = A(x+ 27) we can cal-
wherex, andx, are solutions of the equation culate its mean value exploiting either the probability density
22—V’ (x,0¢)2=0. (45) P(x,t) or the reduced probability distributioR(x,t) be-

cause then the equality
If 1 +Kc>0 then the state equation is determined by

o ~ 2
c=codarcsifa/(1+Kc)]}. (46) (A= JiwA(x)P(x,t)dx= Jo AP hdx (48

This equation can possess two positive roots; c,>0. The

solutionc; is stable whilec; is unstable. If 1+ Kc<0 then  po|ds. It is not a case for nonperiodic functions and then
. there is a problem that distribution should be used for calcu-
c=—codarcsifa/(1+Kc)]}. (47) lation of the average value. Therefore, we consider periodic
functions. Here, two natural order parameters(sinx) and
c=(cosx) occur that characterize the probability distribution
in the same way a&) and(x?). Indeed, the function sixis
odd like the functiorx and the function cosis even like the
functionx?. Becausésinx)=0, below we analyzécosx). In
In a general case the mean-field problem reduces to theig. 3, we show the dependence of the order paranteter
set of nonlinear master equatiof®) and(33) that have to  =(cosx) on the coupling strengtiK. One can distinguish
be solved. Apart from a few previously considered speciatwo main regimes: the diffusividichotomic noise activates
cases that can be treated analytically, only numerical methtransitions over barriers of the effective potentia®)] and
ods are applicable. We have approached the numerical probeondiffusive or locked[dichotomic noise cannot activate

This equation can possess two negative roots that are u
stable. It is depicted in Fig. 3.

B. Numerical methods

051115-5
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FIG. 4. The same case as in Fig. 3: the comparison of mean-

field results and Monte Carlo simulations. For0.25 and7=0.5
there is a perfect agreement of the Monte Carlo and mean-fiel
methods. However, for=1 and7=2 temporal oscillations of den-

FIG. 5. The phase diagram of the system wdt& 2.8 andT
¢ 0. Five various regimes are distinguished: unlocked, oscillating,
mean-field hysteretic, locked, and bistable. The oscillating regime

sity of particles appear in the Monte Carlo method. Thus, the ordehas been verified by Monte Carlo simulations. All other data come
parameter also performs temporal oscillations. An averaged valuom the stationary mean-field problem. The empirical formula
of those oscillations differs from those coming from the mean-field=2/K surprisingly well fits the left boundary of the oscillating

solution. The standard deviation ofaveraged in timgis shown in
the lower inset. One can notice that if oscillations disappe&ar (
=0) then the simulated values ofagree very well with mean-field
predictions.

transitions over barriers of the effective potentidl9)].

region.

teresis is not realizable. In Fig. 4, we depicted this phenom-
enon for r=1,2. We have noticed only monotonic depen-
dence ofc uponK (if cis a periodic function of time, its time
average is taken The quantity that can characterize the

These two regimes, marked by white and gray regions in Figme_independent/time-dependent stationarite., oscilla-

3, are separated by two critical lindsc+ 1=a for positive
values ofc and Kc+ 1= —a for negative values ot. For
negativec, the dependence af uponK is qualitatively the
same as for the equilibrium syste(ffig. 1). These solutions
are unstable and therefore will not be considered. Now, let u
discuss the positive solutiores>0. They depend strongly on
the correlation timer of dichotomic fluctuations. For short
correlation time, the order parametermonotonically in-
creases with the growing coupliri§ For longer correlation
time, new effects arise: the dependence is discontinuous a
hysteretic. In some domain there are three solutopsc,
>c3. The solutiong; andc; are stable while, is unstable.
The hysteresis is bigger and bigger wherncreases. The
jumping pointK; from the lower to the upper branch tends
to infinity and the jumping poinK, from the upper to the
lower branch tends to a constant value determined by E
(46). The upper branch of solutiortg(K)— 1 and the lower
branchc;(K)—0 whenr—o. For 7=, the solutions split
into two branches of three solutions, namely, cge 0 and
two other determined by E@46). The stationary mean-field
solutions have been verified by the Monte Carlo simulations
The comparison is presented in Fig. 4. Simulations show th
the implicit assumption of time-independent stationarity of
the systemwhent— ) is restricted to some values of pa-
rameters of the model. Indeed, if the time-independent st

tions agree with simulations. In particular, fer=0.5 the
hysteresis is observedee pointk =2.94 in Figs. 4 and )7
However, for longer correlation time, temporarily oscillat-
ing steady states exist for which the probability distribution

tions) of the long time state is the time-averaged standard
deviation (5c)?=(c?);—(c)? of the order parameter. We
have observed that ific=0 then the mean-field solutions are
correct. Otherwise, they are incorrect. It is shown in the
fower inset of Fig. 4.

In Fig. 5, we present the phase diagram on tKer{
plane for a fixed amplituda=2.8 of dichotomic fluctua-
tions. In the case of noninteracting oscillators, this valua of
corresponds to the diffusive regime. Roughly speaking, there

e two regions: diffusive whea>1+Kc(7) [i.e., dichoto-

mic noise can induce transitions over barriers of the effective
potential(19)] and nondiffusive whea<1+Kc(7) [i.e., di-
chotomic noise cannot induce transitions over barriers of the
effective potential19)]. The diffusive region is divided into
two parts that we call the unlocked regirtvehere the mean-

%ield solutions are correcand the oscillating regimévhere

the mean-field solutions failln the unlocked regime, there

is one and only one time-independent stationary state and
there is only one stationary value of the order parameter
=(cosx) that is always stable. In this regime, the reduced
stationary probability densitP(x)#0 for anyx. It means

&hat with nonzero probability the phases of the oscillators can

take any value ok and oscillators are not synchronized. In
the oscillating regime, the only stationary state is temporarily

. ) ) aoscillating state for which lim _P(x,t) is time periodic and
tionary state of the system exists then the mean-field solu (e

the order parameter=c(t) is time periodic. From previ-
ously discussed results, it follows that this regime is bounded
from the right, i.e., ifK>K, then this regime disappears.
The critical valueK can be determined by E¢6) from the

P(x,t) is periodic in time. In consequence the order param<£ondition that it possesses the double ropt c,. The oscil-

eterss=s(t) andc=c(t) are time periodic and in the limit

lating regime is presented in Fig. 6, where we show evolu-

of long time, the time-dependent steady states appear. This fion of two distributions, the full densit{(x,t) normalized
the case when the mean-field predictions fail, e.g., the hyssn the interval (- »,») and the reduced densiB(x,t) nor-
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FIG. 6. Monte Carlo simulations of the system far2.8r FIG. 8. The order parameterversus coupling strengtk for
=1.0K=2.94, andT=0. None of the mean-field prediction is re- Selected values of temperatufe The increase ofl decreases the

alized. In the upper plot evolution of the probability density reducedregion of hysteresis. Remaining parametersare.0 anda=2.8.
to xe (0,27) is shown. In lower plot the full distribution is pre-

sented. A starting value was a uniform distributionxoa(0,27). are stable while, is unstable. However, in this regime only

one mean-field solution; is realized, which lies on the up-
per branch of the mean-field hysteresis, cf. the eas@ for

K>4 in Fig. 4. There is also a regime of bistability. As in the
previous case, there are three mean-field stationary values
Cc1>C,>Cc3>0 of the order parameter. But now, two stable
solutionsc, andc; can be realized what is demonstrated in
Fig. 7. The upper state;>c5 corresponds to the locked
‘?egime,a<1+ Kc(7) and the lower state; corresponds to

The unlocked regimea>1+Kcs(7), cf. Fig. 4, the cas&
=2.94 andr=0.5.

malized on one period. In the latter case, the density oscil
lates between the distribution of one maximum aroun(t
corresponds to the maximum of the local potentiatosx)
and the distribution of two maxima around 0 aner Zit
corresponds to the minima of the local potential

In turn, the nondiffusive region is divided into two other
parts that we call the locked and hysteretic regimes. In th
locked regime, only one steady-state solution exists. In thi
regime, there are intervals gffor which the reduced station-
ary probability densityPs(x)=0 and the phases of the os- It is also instructive to see how the probability distribu-
cillators are locked in these intervals. It is an effect of inter- N o i
action and corresponds to the synchronization of oscillatordons P(x,t) or P(x,t) evolve in time approaching the long
(let us remember that in the case on noninteracting oscillaime limit. In Fig. 7, the evolution of the densify(x,t) is
tors, the diffusive regime is realized in which the phases caghown for the values of parameters chosen from the bistabil-
take arbitrary valugs The synchronization is stronger if the 1ty régime of the phase diagram, i.e., when two stable sta-
support ofP.(x) is smaller. In this regime, there is only one tionary s_olut|ons_e>_<|s_t_. One can observe that in depengience
mean-field(MF) value ofc=(cosx), which is always stable. of the microscopic |.n|t|al conditions the system eV(_)Ive either
The so-called MF hysteretic regime is defined in the follow-t0 the diffusive stationary state or to the nondl_ffuswe Ic_>cked
ing way. There are three mean-field stationary valogs stationary state. In two cases, the macroscopic state, i.e., the

>c,>c5>0 of the order parameter. The solutiansandc initial probability density of oscillators is the same uniform
o ' % distribution. The microscopic state, i.e., initial positions of

N all “particles” and realizations of noises are different, it de-
P(x,t=0) termines evolution oP(x,t). For illustrating animations of
N the time evolution we refer to our webpafs].

The influence of temperature is depicted in Fig(o8ly
the mean-field case is showrOn the basis of these results,

I\ 1=0.5 one may conclude that the increase of thermal fluctuations
/M//\/ =15 acts like the decrease of correlation timef nonequilibrium

cos(x)
-An 2x 2% 4m 6%

=1 1=25 fluctuations. The hysteretic region K is reduced as tem-
W =2 perature grows. In particular, in Fig. 8 we see that Tor
t=3

W /M/M/ =1.5 the mean-field problem has got only a single solution.
~4’”\‘2;t\‘\'\4\,\>t=oo t=co an 6%
T - 0
0 2 i on 27

4 2T
FIG. 7. Monte Carlo simulations of the system far=2.8,7 IV. SUMMARY
=0.5K=2.94, andT=0. The starting point was 8000 particles ) . . _
distributed uniformly onx e (0,27). The only difference between In this paper, we have investigated the equilibrium and

left and right scenarios is the microscopic state: individual particlegionequilibrium system of coupled phase oscillators. In fact,
were chosen differentlyall macroscopic parameters are the same it can be any abstract model of interacting particles in spa-
The left scenario leads to diffusive state i@s (2.8—1)/K while tially periodic structure with a periodic global interaction
the right one leads to locked ome>(2.8—1)/K. The shape of a (e.g., interacting Brownian motof&4,15]). The equilibrium
stationary, mean-field distribution is shown fiors . system defined by Ed2) is a special case of models con-
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sidered in the literature. Nevertheless, to the best of ouis magnified and nonequilibrium fluctuations of amplituale
knowledge, the state equati®@®0) has not been presented. are not able to induce transitions over barrier.

We pay attention to the subtle stability problem that some- All the results so far refer to the simple reflection-
times is treated superficiallj15]. Properties of the nonequi- symmetric local potentiat- cosx. If we add the higher order
librium system(28) are naturally much more interesting. The harmonics, e.g., co2the potential is still symmetric. How-
phase diagram consists of five parts and cannot be fully obever, behavior of the system can then be radically different
tained from the mean-field approach. The non-mean-field rebecause the second order paramstefsinx)#0. Phenom-
gime is the oscillating regime, which has been detected bgna such as the symmetry breaking, phase transitions, and
use of the Monte Carlo simulations and by analyzing fluc-noise-induced transport can occur in the system. The paper
tuations of the order parameter (cosx). The next interest- on this subject will be published elsewhere.

ing finding is that although the noninteracting system is in
the diffusive regime, the interaction can move the system to
the nondiffusive regime and then “particles” are confined in
valleys of the potentialof course, it is exact when tempera-  The work was supported by Komitet Bad&laukowych
ture T=0). It means that effectively, for the one-particle through Grant No. 2 PO3B 160 17 and the Foundation for
dynamics, the barrier height 2¢1Kc) of the local potential Polish Science.
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